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A smectic-A free-standing film is always connected by a meniscus to the frame on which it has been
stretched. The meniscus acts as a dissipative reservoir and is characterized by its permeability. We propose a
method to measure directly this quantity by equilibrating two menisci in correspondence with the same
free-standing film. The permeability is shown to depend on the film thickness, in full agreement with previous
indirect measurements obtained by analyzing the growth dynamics of dislocation loops. An improved model of
the meniscus is proposed to interpret all the data.
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I. INTRODUCTION

In a smectic-A phase, the rodlike molecules are arranged
in fluid layers with perpendicular orientation. In a free-
standing film, the layers are always parallel to the free sur-
faces. In addition, the film is always attached to the frame on
which it has been stretched via a meniscus of much larger
volume than the film. For that reason, the meniscus acts as a
reservoir of material[1] which fixes the pressure inside the
film at equilibrium [2]. It turns out that the pressure inside
the meniscus is always less than the atmospheric pressure
due to its shape and the curvature of its interface with the air.
As a result, the film, which is flat, is under compression.
Nevertheless, it can easily withstand this stress without get-
ting thinner because of the layer elasticity[2]. This is the
reason why it is possible to prepare very stable films of vary-
ing thicknesses, from three to many thousands of layers. On
the other hand, a film can get thinner if a pore(i.e., a dislo-
cation loop) of radius larger than some critical radius nucle-
ates inside the film. In that case, the loop radiusr increases
in time until the dislocation disappears into the meniscus.
During this growth process, the film thickness decreases by a
number of layers equal to the Burgers vector of the disloca-
tion. In a recent work[3,4], it has been shown that the pore
dynamics depends on both the film thickness and the perme-
ability of the meniscus. In particular, it has been observed
that the dislocation velocity tends to systematically decrease
when its radius approaches that of the meniscus. This effect
was explained within a theoretical model accounting for the
finite permeability of the meniscus[5,6]. It allowed us to
estimate this quantity by fitting the experimental curvesrstd
to a theoretical law. Nevertheless, this procedure is not pre-
cise as it strongly depends on quantities which are difficult to
obtain, such as the line tension of the dislocation or the in-
teraction energy between free surfaces, which enters into the
expression for the force acting on the dislocation. Our goal in
this article is to measure directly the permeability of the me-
niscus. This is essential to validate the model proposed for
the meniscus in[5,6] and used in[3] to interpret the slowing

down of the dislocation loops at large radius.
The article is organized into seven separate sections: In

Sec. II, we recall the definition of the meniscus permeability.
In Sec. III, we describe the experimental setup and the prin-
ciple of the measurement, which consists of equilibrating
two menisci of different sizes connected by a film of a
known thickness. This is followed by Sec. IV, where we
explain how the permeability can be found from the mea-
surement of the time evolution of the size of the two menisci.
Results are then given in Sec. V and compared to the previ-
ous measurements. Finally, all the data are reinterpreted in
Sec. VI, in which we propose an improved version of the
model of the meniscus given in Refs.[3,6], which takes into
account the confinement of the dislocations. Conclusions are
drawn in Sec. VII.

II. DEFINITION OF THE MENISCUS PERMEABILITY:
THE C„N… FUNCTION

In a previous work, we have shown that the meniscus
does not behave as a perfect reservoir, but instead, as a very
dissipative one[3–6] due to its lamellar structure. For that
reason, a pressure difference must exist between the film and
the meniscus when they exchange material. To a first ap-
proximation, we can suppose that this pressure difference is
proportional to the flux of material:

PN − Pm =
CsNd

m
vm, s1d

wherePN is the pressure inside the film(containingN lay-
ers), Pm the pressure inside the bulk of the meniscus, andvm
the velocity at the entrance of the meniscus(considered posi-
tive when the matter enters into the meniscus and negative,
for matter leaving the meniscus). By definition, the meniscus
permeability is the proportionality factor between the veloc-
ity vm (assumed to be constant over the whole film thickness)
and the pressure dropPN−Pm. From the previous equation,
this factor is expressed in the formmmen=m /CsNd wherem is
the usual dislocation mobility andCsNd a dimensionless
quantity which, for simplicity, we consider to only depend on
the film thickness. This assumption is not obvious and will
be discussed in Sec. VII. The fact that the mobility of the
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dislocations enters directly in the expression of the perme-
ability comes from the fact that the dissipation in the menis-
cus is mainly due to the flow around the dislocations which
pile up in the midplane of the meniscus in order to match its
thickness variation.

We recall that the mobilitym is defined by the relation
v=ms, wherev is the climb velocity of an edge dislocation
under the action of a stresss perpendicular to the layer. This
quantity is well known in the smectic-A phase[7–9] and has
been measured in 8CB both in bulk samples(from creep
experiments[6,10]) and in smectic films[4,6,12].

The goal of this article is to measure directly the perme-
ability of the meniscus or, equivalently, theCsNd function as
m is known.

III. PRINCIPLE OF THE MEASUREMENT AND THE
EXPERIMENTAL SETUP

A direct way to measure the permeability of a meniscus is
to analyze the pressure equilibration between two menisci of
different sizes when they are connected by a film of a given
thickness. The feasibility of this experiment was shown ear-
lier by Picano in his Ph.D. thesis[4], but no reliable results
were obtained at this time.

The principle of the experiment is as follows.
(i) A film is first stretched with a spatula coated with the

liquid crystal 8CB(4-n-octyl-48-cyanobiphenyl from Merck
Ltd) over a circular frame. In practice, the frame is made
from a stainless steel foil of thicknessh0=100mm in which
a circular hole of radiusr f =3 mm has been drilled. The film
thickness can be changed by stretching the film at different
velocities. To simplify the process and make it more system-
atic, the spatula is fixed on a translation stage which is driven
by a stepping motor. In that way, it is possible to choose the
stretching velocity of the film. Experience shows that larger
velocities lead to thinner films. This method allows us to
prepare thick films, withN varying from 100 to many thou-
sands. We note that more than a quarter of an hour is neces-
sary to stretch a very thick filmsN.1000d. Once the film is
stretched, it is allowed to equilibrate during half a day
(sometimes more). During this time, the film thickness and
the shape of the meniscus stabilize. The film thickness is
then measured precisely by interferometry.

(ii ) Once the film is prepared, it is pierced with a metallic
needle of radiusrn=0.3 mm which has been previously
coated with a small amount of 8CB. This precaution is nec-
essary to avoid film rupture. It is worth noting than usually
the film thickness does not change during this process(if it
does, it can be measured again). We then wait many hours in
order that the shape of the meniscus which forms around the
needle stabilizes. The final configuration obtained this way is
sketched in Fig. 1; it consists of a film connecting two cir-
cular menisci of different sizes. Note that because the film is
thick, the two menisci match it tangentially[11,13]. As for
the inner meniscus, it wets completely the needle as shown
in the photograph of Fig. 2. The whole system is placed
inside an oven which is regulated within ±0.05 °C. Finally,
the film and two menisci are observed with a video camera
connected to a computer via reflected light microscopy.

The principle of the measurement consists of measuring
the flux of matter and the pressure inside each meniscus as a
function of time. In the following section, we explain how
these quantities are obtained in practice.

IV. DETERMINATION OF C„N…

With reference to Fig. 1, two quantities are easy to mea-
sure as a function of time with the aid of a microscope: the
width x1 of the outer meniscus(or, equivalently, its radius
r1=r f −x1) and the radiusr2 of the inner meniscus. In order to
show how the measurement of these two quantities allow us
to determineCsNd, let us first rewrite Eq.(1) for each me-
niscus. For the outer meniscus, we have

PN − P1 = −
CsNd

m
v1, s2d

whereP1 is the pressure inside the meniscus andv1 the ve-
locity at the entrance of the meniscus(which we take posi-

FIG. 1. Sketch of the experimental setup. A film is stretched
between a needle and a circular frame. Because the pressures are
different inside the two menisci, a flow occurs inside the film,
which stops when the pressures are equilibrated. The arrows indi-
cate the usual direction of the flow.

FIG. 2. Photograph taken with a macroscope of the needle sur-
rounded by its meniscus. One clearly sees that the meniscus
matches tangentially both the film and the surface of the needle.
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tive, by convention). Note that we have introduced a minus
sign in the right-hand side of this equation since the matter
goes out of this meniscus which means that the material
flows from the outer meniscus towards the inner one. For the
inner meniscus surrounding the needle, we have

PN − P2 =
CsNd

m
v2, s3d

whereP2 is the pressure inside the inner meniscus. Because
the mass is conserved, velocityv2 must be equal tosr1/ r2dv1,
which yields

PN − P2 =
CsNd

m

r1

r2
v1. s4d

Substracting Eqs.(4) and (2), we obtain

v1 =
m

CsNd
r2

r1 + r2
DP, s5d

whereDP=P1−P2 is the pressure diffence between the two
menisci.

It must be noted here that we have implicitly assumed that
the pressure is constant inside the film. This is not exact in
the presence of a two-dimensional radial flow[14] which
leads necessarily to a pressure drop. The latter can be calcu-
lated from the Navier-Stokes equation, which gives[4]

DPN = PN1 − PN2 = 2hr2v2S 1

r2
2 −

1

r1
2D , s6d

where PN1 sPN2d is the pressure inside the film atr =r1 (at
r =r2). This pressure drop is maximized by 2hv2/ r2. This
quantity is always extremely small in comparison to the pres-
sure differences at the entrance of the two menisci asC
@hmr1

2/ r2,10−5 (in the following we shall see that in all
experimentsC.1). So we can consider(within a very good
approximation) that the pressure is constant inside the film
(equal toPN).

In practice, velocityv1 is very small(less than 1mm/h)
and it cannot be measured directly(for instance, by follow-
ing the motion of small particules scattered in the film). On
the other hand, it can be related to the volume variation of
one of the menisci, a quantity much easier to measure ex-
perimentally. LetV2 sV1d be the volume of the inner(outer)
meniscus. According to the mass conservation law,dV2/dt
=−dV1/dt=2pr1Ndv1 (with d the layer thickness), which
gives, after substitution into Eq.(5),

CsNd = 2pmNd
r1r2

r1 + r2
SdV2

dt
D−1

DP. s7d

The following step consists of calculating the volume of
the two menisci and their internal pressures as a function of
the measured quantitiesx1 andr2. This can be done by solv-
ing numerically the Laplace law for each meniscus, which
has been proved to apply to smectic meniscus in spite of
their lamellar structure[2,6,11].

For the outer meniscus, of profiler1szd in polar coordi-
nates(see Fig. 3), this law reads

r19

s1 + r18
2d3/2 −

1

r1
Î1 + r18

2
= −

dP1

g
, s8d

wheredP1=Pa−P1.0 is the pressure drop from the atmo-
spheric pressurePa and g the surface tension[15]. Solving
numerically this second-order differential equation with the
boundary conditions

r1s0d = r1 = r f − x1, r18s0d = + `, r1sh0/2d = r f s9d

gives the pressure dropdP1sx1d and the profiler1szd from
which the volume of the meniscusV1sx1d can be calculated:

V1sx1d = 2E
0

h0/2

pfr f
2 − r1

2sz,x1dgdz. s10d

The functionsdP1sx1d andV1sx1d are plotted in Fig. 4.

FIG. 3. Notations used for the numerical calculations.

FIG. 4. Pressure dropdP1 (a) and volumeV1 (b) numerically
calculated from Eqs.(8)–(10) as a function of the widthx1 of the
outer meniscus. The dotted line has been calculated by using the
approximate formulaV1=s2/3dpr fh0x1.
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It must be emphasized that in this calculation, we have
assumed that the height of the meniscus atr =r f is exactly
equal to the frame thicknessh0. This boundary condition can
be checked visually by observing the frame under grazing
incidence, which shows that there is no visible matter in
excess at the surface of the frame. Another much more con-
vincing way to check this crucial point consists of measuring
the radius of curvature of the meniscus at the matching point
with the film (at r =r1). This can be done very accurately by
measuring via reflected light microscopy the profile of the
meniscus[2]. This measurement and knowledge of the width
x1 of the meniscus allow us to calculate its heighth at r =r f.
The value found in this way is equal to the frame thickness
within ±2 mm, confirming our assumption thathsr =r fd=h0.

The same numerical procedure can be applied for the in-
ner meniscus. It yields, by denotingr2szd the surface profile
(Fig. 3) anddP2=Pa−P2.0 the pressure drop,

r29

s1 + r28
2d3/2 −

1

r2
Î1 + r28

2
=

dP2

g
, s11d

with the boundary counditions

r2s0d = r2, r28s0d = − `, r28sh/2d = 0, r2sh/2d = rn. s12d

Solving this equation gives the pressure dropdP2sr2d, the
height h of the meniscus on the needle, and its complete
profile r2szd from which we can calculate the volumeV2sr2d
using

V2sr2d = 2E
0

h/2

pfr2
2sz,r2d − rn

2gdz. s13d

The functionsdP2sx2d andV2sx2d are plotted in Fig. 5.
Note that we have neglected the effect of gravity as the

heights of the two menisci(h0 andh) are small experimen-
tally in comparison to the capillary gravitational length
Îg /rg<2 mm.

Note also that in Eqs.(8) and(11), the two first terms on
their left-hand side correspond, respectively, to the interface
curvature in the radial planes1/R1d and to the curvature
interface in the orthogonal plane containing the normal to the
interfaces1/R2d. For the outer meniscuss1/R1@1/R2d and
the second term could be neglected. A consequence is thatV1
increases almost linearly as a function ofx1 as shown in Fig.
4(b). This curve is indeed fairly close to what we calculate to
the first order inx1/R1 by neglecting the radius of curvature
R2. Within this approximation, the meniscus has a circular
profile and its volume may be expressed in the formV1
<s2/3dpr fh0x1 [dotted line in Fig. 4(b)]. In contrast, 1 /R1

,1/R2 for the inner meniscus due to the small radius of the
needle and the two terms must be kept, imposing a numerical
solution to resolve the equation.

We can now deduceCsNd from the curvesx1std and r2std
measured experimentally. Indeed, for each data set
fx1std ,r2stdg we can deduceV1std andV2std as well asdP1std
anddP2std from the graphs of Figs. 4 and 5. This then allows
us to calculatedV1/dt (in principle equal to −dV2/dt if the
total volume is conserved, as we have assumed from the

beginning) and the pressure differenceDP=P1−P2=dP2
−dP1. Finally CsNd is obtained from Eq.(7).

V. EXPERIMENTAL RESULTS

An example of a complete set of data obtained with a film
of thicknessN=633 is shown in Fig. 6. The first graph shows
absolute measurements ofx1 and r2 as a function of time.
These values are obtained by displacing the systemsfilm
+frame+needled under the microscope with a precision
translation stage. The edges of the menisci at their matching
points with the film are located by analyzing the interference
fringes which form inside the menisci in reflected light. The
accuracy of these measurements is of the order of ±3mm.
The second graph reports the pressure drops measured in
both menisci as a function of time. As expected, the pres-
sures are different at the beginning and tend to equilibrate in
time, and are essentially the same after two weeks. In the
third graph, the volumes of the meniscus are reported as a
function of time. As expected, the inner meniscus empties
into the outer meniscus. The total volume of the two menisci
is also reported in this graph—it remains constant, which
means there is no leak of material out of the system. This
point was important to check as one could fear that the liquid
crystal flows out by capillarity at the surface of the frame or
the needle. These curves also show that the relaxation takes
place in two steps: it is fast during the first day, as long as the
pressure difference between the two menisci is larger than
about 100 dyn/cm2; on the other hand, it slows down enor-

FIG. 5. Pressure dropdP2 (a) and volumeV2 (b) numerically
calculated from Eqs.(11)–(13) as a function of the radiusr2 of the
inner meniscus.
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mously after 1 day, as 2 weeks are then necessary to reach a
complete equilibrium. This slowing down was systematically
observed in all of our experiments, whatever the film thick-
ness, as long as the pressure difference between the two me-
nisci was inferior to typically 100 dyn/cm2.

From these measurements, it is possible(in principle) to
extract the value ofC by using Eq.(7). Nevertheless, this
requires us to calculatedV2/dt from the experimental curve
V2std. Doing that from the curve shown in Fig. 6 is impos-

sible due to a lack of precision in the data: indeed, if the
absolute measurements ofr2 andx1 are sufficiently precise to
check the conservation of the total volume during the whole
experiment, they are not precise enough to determinedV2/dt.

To obtain a more precise value ofdV2/dt between each
absolute determinations ofr2 andx1, we measured very ac-
curately the relative variation of radiusr2std [or x1std] over
2–3 h. To do that, we digitized and recorded at regular time
intervals the images in the microscope of the edge of the

FIG. 6. (a) Radiusr2 and widthx1 measured
experimentally as a function of time.(b) Pressure
dropsdP1 and dP2 obtained from the graphs of
Figs. (3a) and 4(a). (c) VolumesV1 and V2 ob-
tained from the graphs of Figs.(3b) and 4(b). The
film thickness isN=633. These graphs show that
the pressures inside the two meniscus need two
weeks to equilibrate. The total volumeVtot=V1

+V2 is also plotted in(c). It is constant, which
means that the material is conserved. Lines are
just a guide for the eye.
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meniscus(note that during this sequence the film is fixed
with respect to the microscope). An objective of large mag-
nification s403 d was used to increase the precision, as well
as a high-resolution camera(Hamamatsu C4742-95). Each
image is then analyzed in order to detect the position of the
edge of the meniscus. It must be emphasized that because the
film and meniscus match tangentially, the edge of the menis-
cus is impossible to localize visually. For that reason, we
plotted the intensity profile of the reflected light in the direc-
tion perpendicular to the edge. Because of the thickness
variation of the meniscus, this profile oscillates and shows
interference fringes[2]. It is then possible to detect very
accurately(within ±0.5 mm) the position of the first interfer-
ence fringe, which we suppose to be at a constant distance of
the edge of the meniscus. This is not exactly rigorous be-
cause the radius of curvature of the meniscus changes
slightly during the whole sequence, but it is possible to check
that the error made by measuringdx2/dt in this way is less
than 1%. A sequence of 2 h realized during the stage of fast
relaxation described before(see Fig. 6) is shown in Fig. 7.
The time interval between two measurements is 5 mn. Dur-
ing these 2 h, the edge of the meniscus(more exactly the
position of the first interference fringe) moved over a dis-
tance of the order of 50mm. These measurements allowed us
to determine accuratelydV2/dt. Becauser1 was not measur-
able simultaneously, it was necessary to calculate it from the
graph in Fig. 4(b). This was possible because we know that
the total volume remains constant; thus measuringr2 gives
V2 from which V1=Vtot−V2 and, then,r1 can be deduced. In
this way, it was possible to measureC as a function of time.
Figure 7 shows thatC is constant, within experimental er-
rors, over the whole duration of the recording. Experimental
results show that the value ofC found this way is constant as
long as the measurement is done during the fast relaxation
stage. To the contrary,C starts to strongly increase if the
measurement is performed during the late-stage relaxation
process—i.e., typically, when the pressure difference be-
tween the two menisci is less than 100 dyn/cm2. This point
is not very well understood and will be discussed in Sec. VII.

This experiment was repeated for films of different thick-
nesses and menisci of different sizes. In all cases,C was
measured during the early stage of the relaxation, after the

shapes of the menisci were stabilized. We checked that for
each film of a given thickness,C is constant(i.e., indepen-
dent of the size of the meniscus) provided that the pressure
difference between the two menisci is large enough. In con-
trast,C strongly depends on the film thicknessN, as can be
seen in Fig. 8. This graph shows that in the range of thick-
nesses we have studied,C varies like

CsNd = SNG

N
D2

s110, N , 2000d, s14d

with NG<2700 layers, whatever the size of the meniscus.
This expression shows thatC quickly increases as the film
thickness decreases. This is the reason why we were not able
to do measurements in thin films(less than 100 layers). In-
deed, the meniscus relaxation time becomes so large that it
becomes impossible to measure it. To give an example, if 2
weeks are necessary to equilibrate two menisci with a film of
about 600 layers, more than 1 year(72 weeks) is required
according to Eq.(14) to do the same with a film of 100
layers. As a consequence, this method of measurement is
only applicable to relatively thick films. It turns out that it
was exactly the contrary in the previous work on dislocation
dynamics, where the finite permeability of the meniscus had
only a visible effect in thin films(N,100, typically). For
this reason, these two experiments are complementary. In the
following section, we compare the results obtained by these
two methods.

VI. COMPARISON WITH THE PREVIOUS
MEASUREMENTS AND OUR MODEL OF THE MENISCUS

In Fig. 9, we put together in the same graph all the results
obtained by the two methods. The crosses correspond to the
present measurements, while the circles have been obtained
from the experiments on the pore dynamics[3] consisting of
measuring their radius versus time in films of different thick-
nesses. This figure shows that the two methods give values
of the same order of magnitude in the narrow range of thick-
nesses where they are both applicable(between 100 and 150

FIG. 7. ConstantC measured during the period of fast equili-
bration(between the first two points in Fig. 5) sN=633d. The radius
r2 is measured very precisely by using a high-magnification objec-
tive. In this regimeC is constant.

FIG. 8. ConstantC as a function ofN (log-log representation).
All measurements have been performed during the period of fast
relaxation, when the pressure difference between the two menisci is
typically more than 200 dyn/cm2. The line is the best fit to the
power lawsNG/Nd2.
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layers, typically). Nevertheless, we emphasize that in this
range of thicknesses, both methods are very imprecise, as the
meniscus equilibration time starts to be very long, while the
slowing down of the pores(which is due to finite permeabil-
ity of the meniscus) becomes negligible and very difficult to
detect. This is due to the fact that the thicker the film, the
smaller is the dissipation due to the flow in the meniscus
induced by the growth of the pore. This is easily understand-
able as, according to the mass conservation law, the velocity
vm at the entrance of the meniscus is equal tovr /Nr1 where
v is the pore growth velocity andr its radius. As a conse-
quence the dissipation in the meniscus is maximal whenr
=r1 and equals [using Eq. (14)] F=fsCsNd /mdvmg
3f2pr1Ndvmg=2pr1dNG

2 v2/ smN3d. The 1/N3 decrease ofF
explains why the slowing down of the loop becomes com-
pletely negligible in thick films(more than 150 layers).

In order to interpret the whole curve and the dissipative
behavior of the menisci due to their lamellar structure, we
have previously proposed a model of meniscus in Ref.[3].
This model is summarized in Fig. 10 and consists of consid-
ering the flow around the dislocations which lie in the middle
plane of the meniscus. The fact that the dislocations are lo-
calized in the bulk of the meniscus is due to their repulsion

from the free surfaces as shown previously both theoretically
[6,16–18] and experimentally[6,18,19]. In the model, the
dislocations are separated in two groups:(i) k* dislocations
which can be considered as independent from each other
from a hydrodynamic point of view and(ii ) all the other
dislocations which are situated in the part of the meniscus
that is well oriented[6,11].

In this model, all the dislocations of the second group are
treated like a giant dislocation of Burgers vectorNGd. The
reason for this is that they are so close to each other that they
block the flow in the middle plane of the meniscus. A giant
dislocation mimics this situation from a pure hydrodynami-
cal point of view. By further assuming that all the disloca-
tions have the same mobility, this model leads to the follow-
ing formula [3,6]:

CsNd =
k*

k * + N
+ NG

N

sN + k * − 1d2 , s15d

wherek* is an integer number given by

k * sN + k * d4 =
4lp

2R

d3 . s16d

In this equation,R is the radius of curvature of the free
surface of the meniscus andlp=Îhlp is the permeation
length (with lp the permeation coefficient andh the shear
viscosity parallel to the layers). This length is usually ex-
pected to be of the order of a molecular length[6].

Solving numerically Eq.(15) shows thatk* is equal to
zero in thick films of typically more than 100 layers and
depends little onR in thinner ones(k* ~R1/5 in very thin
films). As a consequence,CsNd is nearly independent of the
meniscus size, in agreement with experiments. This model
also predicts that the curveCsNd has a maximum, as ob-
served experimentally. On the other hand, it leads to a 1/N
variation ofCsNd at largeN, a result that disagrees with our
experimental data, which displays a 1/N2 dependence in the
range 150,N,2000 [see Eq.(14) and Fig. 8].

This point can be easily corrected by taking into account
the fact that the giant dislocation of Burgers vectorNGd is
confined between the two free surfaces of the meniscus.
More precisely, the number of layers in the meniscus equals
N+k* upstream from the dislocation andNG+N+k* down-
stream from the dislocation. As a consequence, we can con-
sider the giant dislocation to move in a film of thickness
NG+N+k*. In Ref. [6] (p. 104), it has been shown that the
mobility of a dislocation of Burgers vectorb in a free film of
thicknessH is given by the formula

msHd = m
H − b

H
, s17d

wherem is the mobility in a bulk sample.
Applying this formula to the giant dislocation in the me-

niscus gives its real mobility:

mG = m
N + k*

NG + N + k*
. s18d

FIG. 9. ContantC as a function ofN: the whole set of the
experimental results. Crosses correspond to the experiment on the
equilibration of the two meniscus; circles have been observed from
the pore dynamics experiment(from Ref. [3]). The solid line is the
best fit to Eq.(18).

FIG. 10. Model of the meniscus used to calculate its permeabil-
ity (from Ref. [3]).
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In principle, the same reasoning must be applied to the
other elementary dislocations situated between the entrance
of the meniscus and the giant dislocation. For instance, the
mobility of the ith dislocation reads, according to Eq.(17),

mi = m
N + i − 1

N + i
s1 , i , k * d. s19d

In practiceN+ i is always much larger than 1, so the con-
finement effect can be neglected for all of these dislocations
smi <md.

Finally, Eq. (16) remains unchanged and Eq.(15) be-
comes, after taking into account the confinement effect of the
giant dislocation,

CsNd =
k*

k * + N
+ NG

N

sN + k * − 1d2

NG + N + k*

N + k*
. s20d

In this equation the first term in the right-hand side remains
unchanged as it corresponds to the dissipation due to thek*
dislocations for which the mobility is constant and equal
to m.

This expression has been used to fit our experimental
data. The theoretical curve is shown in Fig. 9(solid line). We
see that it passes very well through the experimental points
obtained from the method of equilibration of the menisci
(crosses in the graph). In addition, it can be verified that Eq.
(20) simplifies in this range of thicknesses and reads as Eq.
(14) which was determined experimentally. The theoretical
curve also passes through a maximum and fits fairly well the
previous data obtained by analyzing the pore dynamics[3].
On the other hand, the values ofNG and lp found by fitting
the experimental data to expression(20), namely,

NG < 2700 andlp < 190 Å, s21d

are significantly different from those obtained by fitting the
data to Eq.(15): NG=58 000 andlp=15 Å (values given in
Ref. [3]).

It turns out that these new values are much more satisfac-
tory. Indeed,NG=2700 correspond to a giant dislocation of
Burgers vectorb=7 mm (instead ofb=170mm). This result
suggests that dissipation takes place essentially close to the
edge of the meniscus in a typical band width ofW
,sRNGdd1/2 whereR is the radius of curvature of the menis-
cus. Taking as a typical valueR=1 mm, it gives W
,100 mm. As can be seen in the photograph of Fig. 11, this
value coincides with the width of the zone of the meniscus
which is well oriented and does not contain any focal conic
defects. Beyond this limit, the elementary dislocations group
together(this result was demonstrated in Ref.[11]) and de-
stabilize to form oily streaks which are composed of focal
conics[20].

As for the value oflp, it is found to be 10 times larger than
before(about 6d instead of 0.5d). This estimate suggests that
the permeation is fairly easy in 8CB. This is quite possible
and, even, agrees with the experimental fact that the mobility
of edge dislocations is independent of their velocity. Indeed,
it has been shown theoretically[9] that the dislocation mo-
bility is constant and given by the classical formulam
=Îlp/h only in the limit lp@l, wherel is the smectic pen-

etration length(found of the order of 10 Å in 8CB; see[6]).
In addition, the relationlp=hm is now satisfied as we know
from previous measurements thath.5 P [6] and m.4
310−7 cm/P [6,11], which giveshm.200 Å in very good
agreement with our estimate oflp.

VII. CONCLUDING REMARKS

In conclusion, we have shown that equilibrating two me-
nisci of different sizes allows us to determinate their perme-
ability. In agreement with previous measurements on pore
dynamics, we find that the permeability of a meniscus
strongly depends on the film thickness, and very little on its
size. This result is compatible with the usual structure of the
menisci, which are always formed by two well-characterized
regions: one, bordering the planar film, in which layers are
perfectly organized and form an array of elementary edge
dislocations located in the middle plane[11], and a second
one, starting from the place(clearly visible in the micro-
scope; see Fig. 2) where the dislocations group together by
forming giant dislocations, which minimizes their energy
[11]. As shown theoretically and experimentally in Ref.[20],
giant dislocations are unstable with respect to the formation
of focal conic domains[6,21], so that the smectic layers are
rapidly disoriented in this region(see again the photograph
in Fig. 11).

In our model, we have implicitly assumed that the dissi-
pation only takes place in the first region. As a consequence,
we have completely neglected the dissipation inside the dis-
organized region of the deformable meniscus. In other
words, we have assumed that the second region, which rep-
resents the biggest part of the meniscus, acts as a perfect
reservoir. Experimentally, this assumption is clearly valid
when the flux of matter is large enough—i.e., as long as a
significant pressure difference exists between the two me-
nisci (in practice, typically more than 100 dyn/cm2). In this
limit, experimental results are reproducible. This is due to

FIG. 11. Photograph of the meniscus taken from the micro-
scope. Three regions are clearly visible: the film, on the right; a
band, in the middle, in which there is no visible defects; the bulk
meniscus, on the left, in which focal conics are clearly visible. Note
that in the central region, the only thing we see are the interference
fringes which can be used to detect the meniscus profile—in this
region the layers are well oriented and form a grain boundary in the
midplane, only composed by elementary edge dislocations(from
Ref. [11]).
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the fact that the structure of the well-organized region of the
meniscus bordering the film is robust and does not depend on
the film preparation as can be checked experimentally.

On the other hand, our observations suggest that the dis-
sipation inside the bulk meniscus becomes important, and
even dominates the relaxation at the end of the process, when
the deformation rate of the meniscus tends to zero. This
could easily be explained by considering that the bulk me-
niscus behaves like a shear-thinning viscous fluid with a
yield stress below which its effective viscosity would abrut-

ply increase. This explanation is supported by previous mea-
surements of the shear viscosity of the smectic phase in the
presence of focal conics, which clearly showed a Bingham-
type behavior[6,22].
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